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ABSTRACT

In this paper the authors compare the magnitudéseafealized volatility estimators
obtained from the two methods using real intraydaigh frequency return data. These two
realized volatility estimators are non-parametmodel-free approaches. One estimator is the
conventional realized volatility (RV) estimator Bggregating the squared returns extracted
from the intra-daily high frequency return dataisetach of the trading days, and the other
estimator is the two-scale realized volatility esitor (TSRV) obtained using sub-grids
sampling, averaging, and bias correction in in@dydreturns data in each trading day.
Further, the statistical properties of these tvadized volatility estimators are explored. The
results show that, depending on different sub-wratisrdesignated in a trading day, the RV
estimators exhibit very different magnitudes. Oa dther hand, the TSRV estimator shows
very stable magnitudes when the numbers of thegsidis-are big enough. In addition, these
two realized volatility estimators exhibit a framtilly integration, or so-called long memory
property. The results suggest that the lengthsaftanterval for a RV estimator and the
number of the sub-grids for a TSRV estimator impesearkable impacts on the estimation
of daily realized volatility when intra-daily highequency return data are used.

Key Words: Realized return volatility, intradailygh frequency data, GPH estimator, long
memory, microstructure noise
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INTRODUCTION

Return volatility, gauging the fluctuation of a dincial asset’s returns, is widely used
in portfolio construction, option’s pricing and diag, volatility-related derivatives’ trading,
and risk management. As such, researchers have sigandecant efforts in modeling the
return volatility. Many different methodologies atigtories have been developed in the past
decades. Using low frequency daily return datakiRaon (1980), Garman and Klass (1980),
Rogerset al. (1994), Yang and Zhang (2000), among many otsgarchers, developed the
methodologies for historical volatility estimatidangle (1982), Bollerslov (1986), Nelson
(1991), Baillieet al.(1996), Bollerslev and Mikkelsson (1996), amongwnathers, have
made significant contributions to the GARCH-claszdels; Taylor (1982, 1986), Ghyseis
al. (1996), Shephard (1996), Ruiz (1994), Danielsd®94), Andersen and Sgrensen (1996),
Kim et al.(1998), Jacquiest al (1994), among many others, have significantlygis the
stochastic volatility models. All these differempaoaches in estimating the daily return
volatility employ the interday return informatiohherefore, the trading dynamics during a
trading day are not incorporated in these methods.

Since the late 90s, new methodologies have beestatkd to estimate the daily
return volatility with the availability of intradalyigh frequency return data. As non-
parametric and model-free approaches, these me#tiogdsone to estimate the daily return
volatility by exploiting the rich information coriteed in the intraday return data. Andergen
al. (1997a, 1997b, 2001, 2003) propose to use theeggted squared returns obtained in
evenly spaced short intervals within a certainitrgdlay to approximate the daily return
volatility. Therefore, the measure of a daily ratuolatility based on the intraday high
frequency data is related to these subintervadstrading day. Zhanet al. (2005) propose a
two-scale realized return volatility estimator teasure the daily volatility. This method,
instead of using the returns in the subintervatbiwia trading day, partitions the intraday
data into a certain number of sub-grids, and thike first scale construction in the estimator.
In addition, the tick-by-tick returns in the inteaddata are considered in the estimator, and
this is the second scale in the estimator. They dailatility estimated in this way is closely
related to the number of the sub-grids within daiertrading day.

The above-mentioned realized return volatilityreators using intraday data have
imposed significant impacts on return volatilityiestion and forecasting (Andersenal,
1998; At-Sahalieet al, 2008), and volatility-related trading practi@sswell. Motivated to
pursue a better understanding of these two differsalized return volatility estimators, we
aim to complement the existing literature by expigrtheir finite-sample statistical
attributes. Specifically, the authors denote ttaized volatility estimator proposed by
Anderseret al. (2001, 2003) as RV, and study the impacts omjmamics of RV estimates
and on their statistical properties by using dédfdrsubintervals in the estimation; the authors
denote the realized volatility estimator developgdZhanget al. (2005) as TSRV, and
explore the impacts on the dynamics of TSRV estisiand on their statistical properties by
employing different sub-grids in the estimation.

In this paper, by using the intraday high frequedata of NASDAQ 100 tracking
stock in one year period from 01/02/2003 to 12/BQ&, the authors estimate the daily RVs
using 30-second, 1-minute, 5-minute, 10-minutemisute, 30-minute subintervals in each
trading day; we estimate the daily TSRVs with 500,1150, 200, 250, and 300 sub-grids in
each trading day. Based on the real intraday d#tdifierent sampling scenarios we
investigate the characteristics of these two diffiéestimators by (1) comparing the
dynamics in the estimates of RV and TSRV, respeltiand (2) analyzing their finite-
sample statistical attributes. The empirical resintthis paper confirm the existing literature
that RV is significantly impacted by the choicetloé subintervals, and TSRV is significantly
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impacted only when the sub-grids are small. Funtioee, the finite-sample statistical
properties of RV and TSRV are closely related ®dHferent sampling scenarios.

The remainder of this paper is structured as fallomSection 2, the authors briefly
introduce the RV and TSRV, and their estimatiorcpdures as well. Section 3 presents the
data. In Section 4, the empirical results are danted and analyzed. Section 5 concludes.

RV and TSRV

Both RV and TSRV are governed by the assumptionttigelogarithms of a stock’s
trading prices follow a continuous semi-martingdleat is, the log price procegss
modeled by the following stochastic differentiabatjon:

&y dt + 5; dW @

wherey is the drift at timd, s; is the volatility of return process gfat timet, W, is a
standard Brownian process. Given the dynamics af each time in a time period [0T],

o . , . : T
one is interested in calculating the integratedavee . sZdt. WhenT = 1, one calculates
the daily integrated variance. However, the intyailading prices are not continuous.

, AL : . T
Therefore, one can only find the approximationtfa integrated variance sZdt. Both

RV? and TSRY are developed to serve as an estimator(‘)T of’dt with different approaches.

In this study, the authors follow the literaturgacus on the RV and TSRV, which are the
square root of the estimated integrated variance.

RV Estimator

A daily RV is calculated by splitting a trading disyo equally spaced subintervals,
and then by aggregating the squared returns i thasintervals. It is proved by Anderssn
al. (2001) and Barndorff-Nielsen and Shephard (2082) RV is a consistent and robust
estimator of the true return volatility as the subrvals approach to zero. Therefore in the
estimating process, a tiny subinterval is speciftedbtain the RV. The daily RV using the
intraday return data is calculated as:

M-1

RV? = (Y- )J/)z, F 2,.... M- 1 2) (

j=2
wherey; is the log price at timgin a certain trading day the total number of the
subintervals designated in a certain trading daystdown in formula (2), RV is calculated
using the extracted log prices at time pojt4, 2, 3, .., M. Therefore this method makes
use of theM observations in the intraday data. In the U.2 stiock market operates from
9:30am to 16:00pm with 6.5 hours of trading timke authors specify the length of the
subintervals in each trading day as 30 secondsnate) 5 minutes, 10 minutes, 15 minutes,
and 30 minutes. Therefore, the correspondiinig 780, 390, 78, 39, 26, and 13, respectively.
As is shown in formula (2), the RV is directly ried to the choice d¥l, which is determined
by the length of subintervals.

TSRV Estimator

The RV estimator only exploits a small numbertaf teturn observations in an
intraday high frequency data. In contrast, the TSfRumator employs all the observations in
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an intraday data. According to Zhaeal (2005), this method incorporates sub-sampling,
averaging, and bias correction in the computatiath@ daily realized return volatility.
SupposeT ={t,...,t.} is the times of the observed log prices in a aettading day. Then T
is partitioned intd non-overlapping sub-grids with equal number of obsons. Thekth (k
=1, 2,...,K) sub-grid extracts the observations from the winttimday data with following
times attached:

T ={tes tes o s tea 5 » Wherengis the largest integer so that ttg ,, ,  )thobservation

is included inT,. TheTSRMs calculated as follow:

TSRV =1 (y,- ¥ n (yr ¥° 3)

k=1t 4l URET

n- K+1

wherey; is log price process, n is total observationsimi@day data, and =

From the formula (3), it is shown that the estiesabf the TSRV are related to the
value ofK, the number of the sub-grids partitioned in areitddy data. The first part in the
formula (3) is to sample and average the squartedneacross all thi€ sub-grids, and the
second part takes a portion of aggregated squatechs obtained from thetal
observations. According to Zhaegal (2005), the second part is introduced in the TSRV
estimation to correct the microstructure noisentnaiday high frequency data. The extent of
the correction of the bias partly dependsmywhich is determined b as well. In our
study, in order to investigate the impacts ofkhen the dynamics of the estimated TSRV,
we specifyK as 50, 100, 150, 200, 250, and 300, respectively.

Regarding the asymptotic properties of RV and TSiR¥¢rested readers may refer to
Anderseret al (2001, 2003), Barndorff-Nielsen and Shephard 2208nd Zhangt al
(2005). The authors’ study focus on the RV and TSRWmates under the finite-sample
circumstances with real data.

DATA

The study in this paper aims at exploring the privge of the daily RV and TSRV
estimates obtained from varying subintervals ardgnds in each trading day, respectively.
This requires the intraday high frequency datareguent enough. The NASDAQ 100 index
tracking stock (QQQ) was intensively traded in emating day in the market. Therefore the
authors choose in this study QQQ’s intraday higlgdiency data in a one-year period from
01/02/2003 to 12/31/2003 with 252 trading days. diat set is TAQ consolidated quote of
QQQ downloaded from Wharton Research Data Ser(/w&DS). In each trading day, the
trading time spans from 9:30am to 16:00pm.

Prior to the estimation of RV and TSRV, a clearpngcedure is applied to the
original intra-daily high frequency data to remdke typos and unusual log price jumps.

EMPIRICAL RESULTS AND ANALYSIS
Dynamics of the RV and TSRV Estimates

Using the 30-second, 1-minute, 5-minute, 10-minieminute, and 30-minute
subintervals, as explained in Section 2, we oliteerdaily RV estimates. Figure 1 is the time

plots of these RVs. As is shown in the figure,d¢istmated RVs exhibit a dynamic pattern in
their magnitudes. However, among these RV estimatbtained from the different
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subintervals, the overall evolutions in their paththe one-year horizon are quite similar.
The remarkable peaks and troughs almost appelae aaime trading day across the different
RV estimates. Furthermore, as the length of a seihial becomes shorter, the fluctuation of
the corresponding RV estimates becomes more iv@nisiis observed that the RV estimates
with the 30-second subinterval exhibits the higleesént in fluctuation as indicated in Figure
1 (Appendix)

Employing 50, 100, 150, 200, 250, and 300, respelgti we obtain the TSRV estimates
using the intraday data. Figure 2 plots these esésas indicated in Figure 2 (Appendix)

In Figure 2, it appears that the TSRVs exhibit@uniild change in the magnitudes,
especially when the sub-grids are great 100. Mae@s the sub-grids are greater than 200,
the TSRV estimates in each trading day are alnmessame for different sub-grids. Similar to
the RV estimates, the TSRVs obtained from diffesert-grids exhibit similar patterns of the
ups and downs in the one-year trading horizondtfiteon, the peaks and troughs appear at
almost the same trading day.

The Statistical Properties of RV and TSRV

As a preliminary analysis of the RV and TSRV estesathe statistical summaries
are listed in Table 1 and Table 2, respectivelyaddition, we adopt a standard statistical
measurement of variation, the coefficient of vaoiatCV), to measure the extent of the
dispersion existed in each of the RV and TSRV ez The CV is defined as:

Coefficient of Variation( CY=100 § 4)
X

wheres is the sample standard deviation (volatility ofatiity) of the volatility series, and
X is the sample mean of either RV or TSRV estimatemdicated in Tables 1 and 2
(Appendix)

As is shown in the two tables, the sample mearnieoRV estimates decrease as the
length of a subinterval increases. On the othed hdre sample means of the TSRV estimates
remain stable with the different sub-grids. It aggethat when sub-grids are at least 100, the
TSRVs present small changes in both kurtosis ard/is&ss. The coefficients of variation
associated with the TSRVs are smaller and mordestaan those of RVs. For the RV
estimates, when the length of a subinterval ina@gabe standard deviation decreases at first,
and reaches the lowest at the 5-minute subinteitveth increases again. Similar pattern is
observed in regard to the coefficients of the \emm Our findings confirm Andersen et al.
(2001) that a 5-minute may be a best choice fat@ngerval in the RV estimation. Regarding
the TSRV estimates, the standard deviations orthjbéxslight increases with the larger sub-
grids.

To investigate the distributional dynamics of R¥s and TSRVs associated with the
different sampling scenarios, we plot the kernelsity curves for these two return volatility
estimates in Figure 3 and Figure 4, respectiy&ppendix).

As is shown in Figure 3, the kernel density curvkethe RV estimates are right
skewed with the exception that the curve associatttda 5-minute subinterval is close to a
normal distribution. In contrast, it appears frdma Figure 4 that the differences between the
TSRVs' kernel density curves are not significaspexially when the sub-grids are at least
100. Moreover, the kernel density curves of the VSRre quite close to normal distributions
(Appendix).

Investigation on two alternative, Page 5



Journal of Finance and Accountancy

Long Memory Property of the RV and TSRV

One stylized fact documented in the literaturdeslbong memory property existed in
the return volatility in many financial assets. @gwlerseret al. (2001, 2003). Furthermore,
Lo (1991), Robinson (1991), Direg al. (1993), Baillieet al. (1996), and Lobato and Savin
(1998) explore the theoretical aspects of the lmegnory. In our study, we focus on
exploring the long memory behaviors in both RVs @&&RVs under the different sampling
scenarios, as explained in the previous sectigmecifically we estimate the sample
autocorrelation function (ACF) associated with eatthe RV and TSRV estimates. As an
illustrative purpose, we choose in the Figure 5 igadire 6 (Appendix) to present the plots of
the ACFs for the RV with a 5-minute subinterval dne TSRV with 250 sub-grids,
respectively (Other ACF plots exhibit similar patte as those in these two figures, and they
are available upon request). As can be seen fremltis, the estimated sample
autocorrelation function of each of the volatilggries fades out very slowly over a distant
horizon, and exhibits strong and persistent caiicela. This visual analysis presents some
evidences that the RV and TSRV estimators couldgxssthe so-called long memory, or
fractionally integrated pattern, as is describedmderseret al (2001). In this case, the time
series only can be differenced using a fractioiféér@ncing parameted, which is in the
range of (0, 1). To test the hypothesis that bothaRd TSRV estimates don't follow a long
memory process, we implementRfStest proposed by Mandelbrot (19&2)d extended by
Lo (1991) to each of the RV and TSRV estimateshigtest, we set the bandwidth of the
cross variance as 10, and the significance leva@ésified as 5%. The critical value at 5%
significance level is 1.747. Table 3 (AppendixjditheR/Sstatistics of the RV and TSRV
estimates, respectively.

As is shown in the Table 3, all tRéSstatistics obtained for RV and TSRV estimates
are greater than the critical value at the 5% ficamnce level. The hypothesis that there is no
long memory in each of the volatility series ise@gd. Therefore, the test suggests that all of
the RV and TSRV estimates follow a long memoryardgess of the two different estimation
methods. Further, the authors estimate the fragtidifferencing parametetfor each of RV
and TSRV estimates by adopting a GPH estimatorgs®g by Geweke and Porter-Hudak
(1983). In calculating the GPH estimates, the Fsudrequencynis set to b8/2, whereT is
the total observations in the RV and TSRV seriedld 4 (Appendix) lists the estimation

results for thed ’s.
The GPH estimates obtained from the RV and TSRk seeveal that all of the

fractional differencing parameters are in the raoig@®, 1). The GPH estimatek’s for RVs

are in a wide range, from 0.220 to 0.519. As tingtle of a subinterval increases, the
fractional differencing parameter decreases. Agatdd in the literature, when a fractional
differencing parametet is in the range of 0.5 and 1, the volatility sefige non-stationary.
Regarding TSRVs, when the number of the sub-gsidissis than 150, the resulted GPH
estimates are less than 0.5, implying a statiopatiern. When the number of the sub-grids is

at least 200, the correspondidds are greater than 0.5, indicating that the TSRMsw a
non-stationary pattern as the sub-grids are labgerall, the fact that all of the estimated
fractional differencing parameters are less thaorffirms the conclusion made from tR€S
long memory hypothesis test. Therefore, both RV BARYV follow a long memory process
regardless of the two different estimation methods.
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CONCLUSIONS

In this paper, the authors complement the exidiiegature by exploring the
dynamics in the daily estimates of the two influainteturn realized volatilities obtained
using intraday high frequency, as well as theitéisample properties. We employ the
intraday data of the actively traded NASDAQ 10@kiag stock in our empirical study. Our
study focuses on the realized volatility estimateith two different estimation approaches.
The daily return realized volatility proposed bys®nseret al (2001, 2003), sums up the
squared returns extracted in equally spaced subalsewithin a certain trading day. It is
denoted as RV in our study. The daily two-scaldized volatility developed by Zharet al
(2005) is constructed by combining sub-samplingraging and bias correction in the
intraday data within a certain trading day. It @dted as TSRV in our study. Our empirical
results show that the selection in the length sifilsinterval in the RV estimation procedure
has significant impacts on the magnitudes of thienased RVs. In contrast, the number of
the sub-grids adopted in the TSRV estimation pmaaposes mild effects on the magnitude
of the estimated TSRV as the sub-grids are at lH#&tMoreover, TSRV presents slight
differences in their distribution associated witfiestent sub-grids. And RV’s distributions
are more sensitive to the different subintervalswever, the RV is very close to a normal
distribution as the subinterval is 5 minutes. Thasgings are in line with the existing
literature (Andersest al, 2001, 2003) even though the financial assetedected in our
study is different. In addition, the coefficientisvariation (CV) indicate that the volatility of
volatility embedded in the RV estimates is sigrfidy impacted as the length of a
subinterval is beyond 10 minutes. The impacts ernvthatility of volatility in TSRV by the
number of the sub-grids appear to be mild. Finally, results confirm the existing literature
in that both RV and TSRYV follow a long memory preseHowever, we find that fractional
differencing parameters are highly impacted bydheice of the subintervals in the RV and
the choice of sub-grids in the TSRV. Specificalthe TSRVs turn out to follow a non-
stationary fractional integration as the sub-gdds at least 200.

The empirical results obtained from the real intifadata may add some insights into
the following aspects about the estimation of arrevolatility using intraday high frequency
data: (1) choosing a subinterval can have sigmiticmpacts on the estimates and
distributions of the realized volatility proposeg Anderseret al (2001, 2003), (2) choosing
the number of sub-grids can have significant impact the behavior of the fractional
integration in the TSRV estimator proposed by Zheingl (2005). The implication to
researchers and practitioners is that the finitepda behaviors of the return volatility
obtained from intraday high frequency data und#erint sampling scenarios can
remarkably vary when one use the alternative ddlagstimation methods. Therefore, it is
important to take account of these factors in thiatdity-related modeling, trading, and
forecasting.
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APPENDIX
Table 1 The statistical summary of the RV estimates
30-Second -Minute5-Minute 10-Minute15-Minute30-Minute
Standard Deviation 0.00393 0.0034800326 0.00336 0.00347 0.00382
Mean 0.01571 0.0142®.01315 0.01264 0.01232 0.01159
Kurtosis 0.31966 0.61142.32769 4.23126 3.76897 0.36140
Skewness 0.61579 0.591832.77268 1.15160 1.04215 0.65356
Range 0.02036 0.02039.02463 0.02702 0.02832 0.02071

Coefficient of Variation 25.0075 24.37984.7650 26.6154 28.1793 32.9625

Table 2 The statistical summary of the TSRV estimates

K=50 K=100 K=150 K=200 K=250 K=300

Standard Deviation 0.00276 0.0027@00284 0.00288 0.00292 0.00294
Mean 0.01171 0.01183.01207 0.01224 0.01238 0.01249
Kurtosis 2.89360 1.22739.03331 1.01424 1.02190 1.04941
Skewness 0.88800 0.49168.42989 0.43546 0.44581 0.46252
Range 0.02068 0.01826.01737 0.01774 0.01797 0.01810

Coefficient of Variation 23.6142 23.58923.5452 23.5516 23.5512 23.5817

Table 3The estimated R/S statistics for RV and TSRV estsa

RV
30-Secondl-Minute 5-Minute 10-Minute 15-Minute  30-Minute
S/IR 2.012 1.950 1.927 1.925 1.852 1.930
TSRV
k=50 k=100 k=150 k=200 k=250 k=300
S/R 1.807 1.878 1.902 1.912 1.920 1.924

Note: Bandwidth g = 10, Significance level = 5%, Criticalyeat 1.747

Table 4 Fractional differencing parameter: GPH estimatdithe RV and TSRV
series

RV (Fourier Frequency: m =T/2)

30-Second-Minute5-Minutel0-Minutel5-Minute30-Minute
d 0.519 0.477 0.439 0.389 0.288 0.220
Standard Erro (0.075) (0.064) (0.065) (0.056) (0.076) (0.062)

TSRV (Fourier Frequency: m = T/2)
k=5C k=10C k=15(C k=20C k=25 k=30C

d 0.374 0467 0.497 0515 0520 0521
Standard Error (0.067) (0.066) (0.065) (0.065) (0.063) (0.062)
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Figure 5 The ACF plot of the RV estimates with a 5-minutbiaterval

Figure 6 The ACF plot of the TSRV estimates with 250 suidlgr
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