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ABSTRACT 

Davis and Sumara (2010) point out that learning is complex, which is evident to anyone 

who has strived to support students’ learning. However, it is perhaps less apparent that 

complexity theory can be useful for its power both to unify various theories of learning and to 

provide a foundation to foster understanding among learners and teachers. The attributes of a 

complex system—emergent, dynamic, co-adaptive, nonlinear, recursive, nested processes—are 

readily observable in the learning and learning-teaching environments. The benefits of seeing 

such environments through the lens of complexity theory are unification, clarification, and a 

suggested direction for progress. In this paper, I propose a theory of teaching that is coherent 

with the Pirie-Kieren Model for the Dynamical Growth of Mathematical Understanding, and 

situated within complexity theory as a superordinate framework.  
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TRANSFER 

Spiro and De Schryver (2009) discuss this problem by contrasting Well-Structured 

Domains (WSDs) and Ill-Structured Domains (ISDs). WSDs are generally closer (and sometimes 

identical) to the contexts in which knowledge and skills are learned; they also tend to be more 

closely related temporally to the learning of skills. ISDs lack most/all of these attributes and  

instead are viewed as being “indeterminate, inexact, noncodifiable, nonalgorithmic, 

nonroutinizable, imperfectly predictable, nondecomposable into additive elements, and, in various 

ways, disorderly" (Spiro & De Schryver, 2009, p. 107). In addition, ISDs tend to also be 

temporally further into the future. Thus, although far transfer is identified as a major goal of formal 

education, there is little evidence that this type of transfer occurs. This lack of scientific evidence 

for far transfer has been used by critics to argue that direct instruction is superior to constructivist-

based instruction (Kirschner, 2009; Mayer, 2009; Sweller, 2009). Yet, Spiro and De Schryver 

(2009) point out that scientific evidence of far transfer is impossible, given the attributes of 

situations in which far transfer may occur, especially temporally (it might be years before an ISD 

requires far transfer). Clearly, no empirical research structure would be possible. Barnett and Ceci 

(2002) have offered a taxonomy for far transfer (see Table 1) that concisely summarizes the 

continuum of near versus far transfer; they also point out that “Children ... transferred when they 

developed a deep, rather than surface, understanding” (p. 616). Therefore, since transfer is central 

to learning, any theory of learning or teaching must address the need for deep learning. 

Spiro, Coulson, Feltovich, and Anderson (1994) have advanced a Cognitive Flexibility 

Theory (CFT) specifically targeted for far transfer. Their theory is heavily structured to avoid 

what they call learning misconceptions that students acquire from exposure to strategies aimed at 

near transfer. For example, Spiro et al. list as necessary elements: avoidance of 

oversimplification and over regularization; multiple representations/schemas; centrality of cases 

(bottom-up vs. top-down analysis); conceptual knowledge as knowledge in use; schema 

assembly (assemble knowledge from different conceptual and precedent cases, rather than 

retrieval and accretion of existing schema; noncompartmentalization of concepts and cases 

(multiple interconnectedness); active participation, tutorial guidance, and adjunct support for the 

management of complexity. CFT recognizes that “the learner must attain a deeper understanding 

of content material, reason with it, and apply it flexibly in diverse contexts” (Spiro et al., 1994, p. 

2). Spiro et al. apply CFT to situations in medical training, requiring transfer in ISDs, with some 

temporal factor (near or far). 

 

COMPLEXITY THEORY AND EPISTEMOLOGIES OF LEARNING 

 

In this section, instead of debating the various theories’ attributes of various theories— 

since as Davis (1996) points out that there are hundreds and possibly thousands of theories of 

learning—I discuss various epistemologies of learning and show how complexity theory can 

serve as a unifying concept.  

Constructivism is based on the theories of Piaget and represents “an effort to construe 

personal learning through the metaphor of emergent biological forms, the structures of which are 

conditioned but never determined by their contexts—hence his use of terms such as ‘assimilation’ 

and ‘accommodation’” (Davis & Sumara, 2002, pp. 411-412). For Piaget, learning was an 

individual but not isolated activity in which “the individual knower was engaged in the unrelenting 

project of assembling a coherent interpretive system, constantly updating and revising explanations 
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and expectations to account for new experiences” (Davis & Sumara, 2002, p. 413). This has strong 

echoes of Kelly’s Personal Construct Theory, whereby individuals are constantly anticipating and 

predicting based on their current construct system (Hogan, Johnson, & Briggs, 1997), revising or 

rejecting personal constructs when experience causes cognitive dissonance. The UK Council for 

Psychotherapy classifies Personal Construct Theory as Experiential Constructivism. Interactions, 

including social, are essential under radical constructivism, but are seen as context rather than 

primary. Von Glasersfeld (1995) identifies constructivism as adaptation, with the goal of a 

coherent, conceptual organization of the world as experienced (p. 7). 

Social constructivism foregrounds social interactions as the drivers of learning. Based on 

Vygotsky’s notions of interpersonal preceding intrapersonal, cognition is diffuse, distributed, and 

collective (Davis & Sumara, 2002, p. 414). Gergen (2005) points out that language plays a very 

significant role in social constructivism, as a means of communicating meaning, where meaning 

is also context dependent. Vygotsky’s work provides some informative concepts for teachers, 

such as the zone of proximal development (ZPD), which is the difference between what a learner 

can accomplish with the assistance of knowledgeable others (teachers, parents, other students) 

and what the learner can accomplish unaided (Hughes, 2014). The processes inside the ZPD are 

typically called scaffolding (Hughes, 2014) and consist not of telling the student an answer but 

rather asking questions, suggesting directions, directing students to other resources, and 

providing encouragement. 

Sociocultural theories are related to Vygotsky’s metaphor of shared labour. Davis and 

Sumara (2002) identify classroom-related facets of this theory, such as emphasis on group 

processing and the justification of positions within disciplines. There is a relationship here to 

situated cognition, with its concern for the processes by which individuals enter established 

communities of practice (Davis & Sumara, 2002). 

Cobb (2005) identifies a key difference among the aforementioned positions as the unit of 

analysis, with radical constructivists’ unit being the individual, and sociocultural and social 

constructivists’ unit being the individual-in-social-action; however, Cobb acknowledges many 

similarities across the positions. Bauersfeld (2005), in arguing for “mathematizing as a social 

practice,” also recognizes the multiplicity of positions within a mathematics classroom, sometimes 

competing but often complementary. Many of the complementarities reflect complexity-based 

concepts: emergence, biology-based metaphors for learning, dynamic, nonlinear, and self-

similarity (Davis & Simmt, 2003). Thus, a complexity-based theory of learning subsumes many of 

the key features of all of the theories of learning described above. This position is especially useful 

when discussing theories of learning mathematics, such as the Pirie-Kieren model. 

 

PIRIE-KIEREN MODEL FOR DYNAMICAL GROWTH OF MATHEMATICAL 

UNDERSTANDING 

 

The Pirie-Kieren model for the dynamical growth of mathematical understanding is a 

constructivist model (Pirie & Kieren, 1992) consistent with, and representative of, a complexity 

orientation for learning. Pirie and Kieren (1994) formulated a model for mathematical 

understanding that is coherent with complexity theory, in that it is nonlinear, dynamic, active, 

and recursive. A representation of the model is shown in Figure 1.   
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Figure 1. The Pirie-Kieren Model for the dynamical growth of mathematical understanding. 

 

Primitive Knowing represents the learner’s initial knowledge about the topic. The use of 

the word primitive does not imply rudimentary or low-level knowledge; simply, this is the 

learner’s knowledge state prior to engaging. In the next level, Image Making, image means any 

representation, including mental, visual, pictorial, and so on. This is consistent with schema 

construction and adaptation. Schema are interconnected mental representations of prior 

knowledge, often compared to mental mind maps (Irvine, 2016; Widmayer, n.d.). Derry (1996) 

suggests that schema represent the big ideas fundamental to understanding. Constructivist theory 

(e.g., Fosnot, 2005) claims that learning occurs when students modify or build onto their existing 

schema for a particular topic. When considering a cognitive taxonomy such as Marzano’s New 

Taxonomy (MNT), this level is analogous to a taxonomic-level Comprehension such as 

Symbolizing (Marzano & Kendall, 2001, 2007) whereby the student constructs mental or physical 

images of concepts. Image Having represents a level where actual image making is no longer 

necessary; the learner can use the image without resorting to image making or specific examples.  

 At the Property Noticing stage, the learner is able to construct context-specific properties 

by combining attributes of images. In a cognitive taxonomy such as MNT, this represents a 

taxonomic-level of Comprehension such as Integrating (Marzano & Kendall, 2001, 2007) in 

which students identify essential and non-essential characteristics of concepts. At Formalising, 

the learner abstracts a common attribute or method from the properties noticed in the previous 

stage. This level is analogous to Analysis-Matching level in a taxonomy (Marzano & Kendall, 

2001, 2007). Observing, a level equivalent to taxonomic Analysis-Classifying (Marzano & 

Kendall, 2001, 2007), allows the learner to express coordinated formalizing as theorems. At the 

Structuring level, the learner collects appropriate theorems to form a coherent theory, the 
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taxonomic Analysis-Generalizing (Marzano & Kendall, 2001, 2007). Finally, Inventising 

involves generating new questions based on a full, rich understanding of the topic, by breaking 

away from the preconceptions that enabled learners to reach this outer level. This is equivalent to 

the Analysis-Specifying or Predicting level in Marzano’s taxonomy (Marzano & Kendall, 2001, 

2007). In MNT, all Analysis levels are at a higher level than Comprehension levels. 

There are three important features of the model. Folding Back, a dynamic, recursive 

process, involves revisiting previous levels to build understanding and allow the resolution of 

problems or questions that have occurred at a more outer level. Folding back is critical to 

building understanding. Because learners engaging in folding back return to the previous level 

but retain all the newer understanding that they have developed, Pirie and Kieren (1992) refer to 

this richer understanding as Thickening. Learners’ knowledge is thus “thicker” or richer, as they 

return to previous levels and reconstruct their understanding using this new knowledge. This is 

an important feature of this model, and is at the heart of enriching learners’ understanding. The 

third feature of the model is “Don’t Need” Boundaries. Once beyond such boundaries, learners 

do not require a return to a specific prior level in order to proceed; the growth of “Don’t Need” 

Boundaries provides a benchmark of the learners’ growth in understanding. In Figure 1, “Don’t 

Need” boundaries are identified with heavier lines. It is critical to recognize that learners do not 

proceed linearly towards the outer levels. Through folding back, learners proceed nonlinearly 

towards deeper understanding, which is often represented on the model by a “wandering” line that 

revisits earlier levels, advances, revisits, and so on, in an irregular, nonlinear, recursive manner.  

Pirie and Kieren (1994) point out the interconnectedness of mathematics, with a process 

that I call chaining. They provide the example of a student whose understanding of fractions (at 

whatever level, probably imperfect, that such understanding exists) becomes the learner’s 

primitive knowledge for understanding decimals. It is not possible to silo a topic to the exclusion 

of other related topics and concepts. This is a marvelous illustration of the complexity of 

mathematics and of learning—chaining is not meant to imply linearity, as the interrelated topics 

of mathematics form a rich, interconnected, multilayered structure that grows with the learner’s 

growth of understanding. Figure 2 illustrates an (incomplete) example of chaining. The 

illustration is incomplete because learners will continue to grow and build on their current level 

of knowledge.
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Figure 2. An (incomplete) example of chaining. 

One of the strengths of the Pirie-Kieren model is that it can reflect not only individual 

learning but also pairs or group learning (Martin, Towers, & Pirie, 2006; Towers & Davis, 

2002); with workplace training (Martin & LaCroix, 2008); with teacher candidates (Slaten, 

2007); and with classroom teachers (Droujkova, Berenson, Slaten, & Tombes, 2005). Towers 

and Davis (2002) conducted an especially interesting study in which they produced folding back 

diagrams for two individual learners working as a pair, identifying points of convergence and 

divergence of the students’ thinking in response to teacher prompts and questions.  

                                                                                                                                                                                     

A THEORY OF TEACHING COHERENT WITH THE PIRIE-KIEREN MODEL FOR 

THE DYNAMICAL GROWTH OF MATHEMATICAL UNDERSTANDING 

 

While theories of learning such as Pirie-Kieren inform our thinking concerning what 

happens to the learner and engenders growth of understanding, they are descriptive and do not 

provide guidance for teachers as to what should be done to foster learners’ growth. However, 

descriptive theories of learning may provide minimal guidance with respect to teaching. For 

example, Davis and Sumara (2002) indicate that teachers subscribing to a “constructivist” 

teaching orientation may enact a trivialized version of constructivist instruction, such as 
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assuming that providing manipulatives is sufficient. It can also lead to absurdities such as “don’t 

tell the students anything” or (my personal favourite) “since teachers and students learn together, 

it is an advantage for teachers to have poor content knowledge, so they can grow together” 

(Davis & Sumara, 2002). Such statements represent a misunderstanding of the concept of 

learning together. While students and teachers alike learn, each is learning different things: 

Students are learning mathematical content and concepts and principles; teachers are learning 

about their students, and in addition may also learn different lenses through which to view 

particular mathematical content. However, students and teachers are not learning identical 

content nor in identical ways.   

Attempting to teach with a constructivist view of learning may result in broader 

misconceptions. For example, a school district interpreted the work of Cathy Fosnot (Fosnot & 

Dolk, 2001) to mean that teachers were not to give students learning goals. Rather, the students 

were to “investigate” and somehow mathematical understanding would occur. Instead of being 

provided with a learning goal such as “Investigate whether there is a relationship between 

surface areas and volumes of cylinders,” students were provided various cylinders and teachers 

watched, without interacting, as the students floundered through the class. This has been a strong 

criticism of constructivist-based teaching (Kirschner, 2009; Mayer, 2009; Rosenshine, 2009; 

Sweller, 2009), where advocates of direct instruction define constructivist teaching as discovery 

inquiry, with no or minimal teacher guidance or intervention. It is clear that many teachers are 

unsure of what steps to take to foster student learning. Even when supported by professional 

learning, teachers either reject a constructivist-based approach or are unable to implement it 

effectively.   

There are two contrasting reasons for this situation. In secondary school, teachers 

frequently reject a “new” or different approach based on their own significant content knowledge 

and continue to teach the way they were taught, usually in a transmission or instrumental mode. 

They often argue that this approach is best for their students since this is the dominant approach 

in postsecondary institutions, and the significant  number of studies that indicate the lecture 

method is an inefficient and ineffective method of knowledge construction does little to sway 

their resolve. Alternatively, teachers in many Kindergarten through Grade 8 classrooms are 

unable to implement an effective constructivist based pedagogy because of their weak content 

knowledge, both mathematical and knowledge of the processes and practices that instigate 

mathematics learning. Ball and Bass (2003) refer to this as pedagogical content knowledge, or 

sometimes as content knowledge for teaching mathematics (CKTM). In spite of their best 

intentions, these teachers are unable to respond meaningfully to student endeavours, questions, 

or hypotheses, such as student-generated algorithms, conjectures, misconceptions, and lateral or 

nonlinear thinking. For many of these teachers, the mathematics curriculum is the textbook, 

which is dealt with in a linear, often mind-numbing manner. Without any clear indication of 

what they should do, even teachers who attempt to break this cycle of direct instruction either 

flounder, give up the  approach, or resort to less than optimal instructional engagements.   

Evidence of this failure is found in Ontario’s Education Quality and Accountability 

Office (EQAO) standardized tests; over the past 10 years, EQAO Grade 6 mathematics results 

have fluctuated between a mere 58% to 61% of students achieving Level 3 or Level 4 standards 

that meet or exceed provincial expectations, respectively (EQAO, 2012). While the EQAO 

assessments are certainly imperfect and subject to numerous criticisms, the failure to increase 

meaningful understanding among so many students despite high levels of financial and 

professional learning supports is a damning indictment of the manner in which “constructivist 
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based teaching” has been implemented. Simply put, teachers lack clear, research-supported 

direction as to what they should be doing. What is needed is a theory of pedagogy that is 

coherent with theories of learning, such as the Pirie-Kieren model. Davis, Sumara, and Luce-

Kapler (2008) point out that there is no causal link between teacher actions and student learning; 

what is required is that the teacher provides situations and frameworks that will support learners 

in deepening their own understanding (here I use “learners” collectively to identify individuals or 

groups of students progressing towards better conceptual understanding, although each possesses 

a different lens).  

Various authors have identified aspects of teaching, often through metaphor: Davis 

(1994, 1997) focuses on teachers’ “listening for differences” or hermeneutic listening (discussed 

later in this paper); Sfard (2001) identifies communication as paramount; Martin et al. (2006) 

uphold the importance of improvisation and students’ participation in learning; Davis and Renert 

(2009) highlight shared participation; Warner and Schorr (2004) describe the value of student-to-

student questioning; and Towers (2010) discusses teaching through inquiry. Still, while all of the 

latter studies identify important facets of teaching, none provide a comprehensive description of 

what teachers are expected to do to engender increased student understanding.   

In this section, I propose a theory of teaching that is coherent with a constructivist/ 

complexity theory of learning (such as Pirie-Kieren). Anyone who has been in a classroom 

recognizes that teaching is a complex activity, particularly when meeting all the criteria for 

complexity outlined previously. It is dynamic, nonlinear, emergent, interactive, and frequently 

surprising. I use the metaphor of nested systems, like the Pirie-Kieren model, although Davis and 

Sumara’s (2012) metaphor of decentralized networks is perhaps more appropriate, especially for 

the teaching model.   

While there currently are numerous theories of teaching, the majority represent teaching 

as a linear (sometimes cyclical) process. Simon (1995), for example, identifies a number of 

important considerations for teachers to address, however he also presents a linear model for 

teaching, followed by a matrix model, both with considerable feedback loops. Similarly, 

Berenson, Mojica, Wilson, Lambertus, and Smith (2007) describe a teaching protocol based on 

students developing mathematical models, but in a linear progression. The concern here is that 

any linear or nearly linear model of teaching is a mismatch with a theory of learning that is 

complex (i.e., dynamic, nonlinear, recursive, and emergent).   

Figure 3 illustrates a theory of teaching that is coherent with a constructivist/complexity-

based theory of learning, such as the Pirie-Kieren model, using a similar metaphoric 

representation to emphasize the coherence. The components of the teaching theory are described 

below, followed by a discussion of the “pre-activities” in which the teacher engages.  
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Figure 3. A theory of teaching coherent with a constructivist/complexity-based theory of 

learning. 

 

Initiating is the initial teacher task, but not the initial teacher reflection. Initiating is the 

situation, problem, or inquiry topic that the teacher has identified as most appropriate for his or 

her students, for a particular concept. Once students are engaged in the initiating task, the 

teacher’s role involves Nurturing.  Nurturing refers to nurturing of the mind; it involves 

prompting, probing, questioning, seeking clarification, and identifying misconceptions. 

Nurturing revolves around what Davis (1995, 1996, 1997) calls hermeneutic listening. Davis 

(1997) describes hermeneutic listening as  

intended to reflect the negotiated and participatory nature of this manner of interacting 

with learners. ... This sort of listening is an imaginative participation in the formation and 

the transformation of experience. Hermeneutic listening demands the willingness to 

interrogate the taken for granted and the prejudices that frame our perceptions and 

actions. (pp. 369-370)  

Both the learner and the teacher will engage in “folding back” actions during this phase, with 

repeated references to the initiating task, as both seek clarity and seek to uncover the current 

level of student understanding.  The learner’s need to fold back will determine when the teacher 

folds back. During this phase, concepts or skills that may be ancillary to the learner’s 

understanding of the topic may be uncovered. This leads to the level of Supporting, whereby the 

teacher provides learning activities to assist students in moving forward with the main topic. 

Once these ancillary activities are completed to the student’s and teacher’s satisfaction, 

folding back to the nurturing level will occur, as the student then moves on with understanding 

their principal concept. As a student’s understanding grows, the teacher’s task becomes 

structuring activities that promote Deepening of understanding. This will generally require 

folding back to the levels of supporting and nurturing. Deep learning is critical for enduring 
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understanding (Irvine, 2016).  Deepening will typically involve new or more in-depth subtasks 

for the learner, at the appropriate level and time. Similarly, the level of Broadening asks the 

teacher to provide tasks that will increase the breadth of students’ understanding of the concept, 

making connections to other topics, the real world, possibly similar but also possibly dissimilar 

applications, and so on. This level addresses transfer, a critically important concept. As Martinez 

(2010) notes, “Transfer is so important that it arguably is the ultimate goal of education” (p. 

111).  Similarly, Perkins and Salomon (1988) identify transfer as “integral to our expectations 

and aspirations for education” (p. 22); they argue that knowledge and skills acquired in formal 

schooling are generally inert, and neither useful nor available for transfer. In particular, studies 

have shown that transfer is more likely to occur in situations of near transfer, and much less 

likely to occur for far transfer (Barnett & Ceci, 2002). Activities in Broadening will typically 

involve near transfer, although instances of far transfer could be undertaken depending on the 

student’s readiness and the teacher’s ability to recognize the student’s needs. Finally, the teacher 

moves to the Cohering stage. Here the teacher attempts to move the student’s knowledge into the 

realm of taken as shared, while recognizing that each student’s understanding will differ in some 

respects to the teacher’s as well as to other students’ understanding. This stage is important for two 

reasons: First, logistically the teacher needs to deal with a class of students whose knowledge has 

some level of consistency; second, students must be able to deal with and communicate about 

concepts in a way that allows large-group discussion on somewhat common ground. 

With every instance of folding back, the teacher’s aim is to thicken students’ 

understanding. Metaphorically, the teacher’s theory of teaching is overlaid on students’ 

respective theory of learning, in a complex dance of actions by both parties aimed at increasing 

student understanding. 

 

WHAT HAPPENS BEFORE THE INITIATING TASK IS CHOSEN? 

 

The initiating task serves several purposes. First, it activates students’ prior knowledge, 

which entails activation of student schema called cognitive fields (Derry, 1996). Cognitive fields 

are a distributed pattern of memory activation that makes memory objects more available than 

others, based on a (initiating) event (Derry, 1996). The initiating event also serves to motivate 

students to engage in the task. Often this mandates that the initiating event be grounded in real 

life, particularly the students’ real lives (Irvine, 2015). Motivation has been linked demonstrably 

to mathematics achievement, in a reciprocal relationship. This means that increased motivation 

correlates with increased achievement, and increased achievement correlates with increased 

motivation (Irvine, under review). Finally, initiating tasks may cause cognitive dissonance, 

which occurs when a situation conflicts with a student’s pre-existing schema, causing the student 

to interrogate both the new situation and the pre-existing beliefs (Widmayer, n.d.). Prior to 

identifying an initiating task, the teacher must do a significant amount of “homework.” Figure 4 

outlines the preparatory activities (note here also that folding back will occur as the teacher 

identifies and rejects possible pathways and alternatives).    
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Figure 4. Teacher knowledge and skills for a theory of teaching coherent with constructivist/ 

complexity-based theory of learning: Requirements before choosing an initiating task. 

 

The process begins with identifying an appropriate Theory of Learning, in this case the 

Pirie-Kieren theory. The second level involves the teacher’s Knowledge About Students—their 

attitudes, interests, readiness, preferred learning styles, and other relevant background. Next the 

teacher must have a level of Mathematical Content Knowledge with respect to the topic under 

study. This level of knowledge need not be exhaustive, but must be sufficient to enable the teacher 

to support students’ learning, recognize alternative or diverse pathways, and allow students to 

engage with the concept in diverse ways. At the next level the teacher must have the required 

Content Knowledge for Teaching Mathematics (CKTM). Ball and Bass (2003) posit that CKTM is 

qualitatively different from mathematics content knowledge; it involves knowing not only the 

mathematics content but also a variety of ways to address that content knowledge. This enables the 

teacher to respond appropriately, fully, and deeply to student-generated changes to the initial 

anticipated learning trajectory. Then, the teacher must possess the necessary Skills to Support the 

Theory of Learning, which include: hermeneutic listening, reflective questioning, skillful probing 

and clarifying, and the ability to urge and encourage students to take “the path less travelled.” The 

teacher also needs to be skilled and knowledgeable in activities involving framing, for example: 

Bansho (Literacy and Numeracy Secretariat, 2010), Math Congress (Fosnot, 2005), and Math 

Forum (Literacy and Numeracy Secretariat, 2011), which are all consolidation related structures. 

Knowledge is also required in relation to frames for learning that are coherent with the theory of 

learning, such as concept attainment, placemat, anticipation guides, and other appropriate 

instructional strategies. Finally, the teacher should have dynamic classroom skills, because 
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teaching in this way tends to be very active, noisy, and energized. The last stage is Initial 

Conjecture of Student Learning Strategies; Simon (1995) emphasizes that conjecturing initial 

student learning trajectories is particularly important. Despite recognizing that these learning 

trajectories will perforce change, such initial conjectures will shape the initiating task that is selected. 

 

CONCLUSION 

 

It is critical that any theory of teaching be coherent with the theory of learning under 

which students are engaged. Implementing the theory of teaching outlined above will require a 

significant commitment to job-embedded professional development. This will be necessary for 

teachers currently in the classroom, as well as requiring modifications to pre-service teacher 

education programs. Pathways will also be needed to encourage teachers of senior mathematics 

courses to contemplate and hopefully implement this theory. Their relentless focus on 

mathematics content will be difficult to overcome.  

At the elementary level a significant impediment is teacher self-efficacy, which Ross 

(2009) has shown to be stable and difficult to change, as well as teacher attitudes towards 

mathematics. Job-embedded professional learning at this level will also need to address 

mathematical content knowledge, which is related to self-efficacy beliefs. Glanfield (2004) 

emphasizes that teacher modification is best engendered through professional conversations, 

which need to occur both within panels (elementary or secondary) and cross-panel (elementary 

and secondary) to support seamless student transitions across levels. Research will be needed to 

refine or modify the theory of teaching presented here to better mesh with the realities of the 

classroom. Davis et al. (2008) point out that promulgating change requires reaching a “critical 

mass” of educators who embrace the change. Innovation and diffusion research identifies 

Rogers’s S curve as a model for adoption of new concepts (Markus, 1987; Rogers, Medina, 

Rivera, & Wiley, 2005). This theory postulates an S shaped adoption curve. Initially, the 

innovators adopt the new concept, followed by early adopters. Once a critical mass of adopters is 

achieved, the rate of adoption increases dramatically, as adopters and then late adopters accept 

the innovation. After this phase, the rate of innovation acceptance levels off, leaving only the 

very late adopters and the resistors.  

Davis et al. (2008) also point out that real change in teacher behaviour evolves over the 

teachers’ professional lifetime, and is neither instantaneous nor in any sense short term. 

Professional growth takes significant time; however, formulating and implementing a theory of 

teaching that is coherent with a theory of learning based on constructivist/complexity, such as 

Pirie-Kieren, has the potential to improve mathematics learning for students. 
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