
Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 1

Extending SQL Implementation to Calculate Percentile/Rank

Distributions and Percentile Aggregates

John N. Dyer
Georgia Southern University

ABSTRACT

As more and more organizations are data-driven, educators, students, and practitioners
are often expected to possess adequate skills in basic Structured Query Language (SQL), and in
many cases, skills beyond simple classroom/textbook applications. It is increasingly important
that those in information systems, information technology, computer science (IS/IT/CS), and
analytics possess a more robust skill set than what is learned in a basic database class. Although
relational database management systems (RDBMS) encompass many query tools, they were not
designed to behave like spreadsheets or analytical software. As such, one might go back and
forth between the database and external software to organize and summarize data; an
export/analyze/import (EAI) approach. When real-time database summaries and aggregations are
required, EAI is not an option. Unfortunately, any RDBMS provides only a small set of standard
SQL aggregate functions such as the sum, count, average, minimum, maximum, variance,
standard deviation, first, and last. Aggregates beyond these must be calculated using SQL in a
programmatic approach. This paper presents and implements 3 query methods that allow
learning and practicing non-SQL supported summaries/aggregates in real-time within the
RDBMS, including percentile and rank distributions, calculations of exact and approximate
percentiles, and a 5-number summary dashboard-type application. As such, these methods can be
extended to other aggregates such as the interquartile range (IQR), measures of distribution
skewness, and outlier detection. Hopefully, this paper can serve as a resource to facilitate higher
learning skills and expand the capabilities of educators, students, and practitioners in SQL.

Keywords: Database, SQL, Aggregate Function, Percentile, CDF, Rank

Copyright statement: Authors retain the copyright to the manuscripts published in AABRI

journals. Please see the AABRI Copyright Policy at http://www.aabri.com/copyright.html

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 2

INTRODUCTION

SQL has primarily been the domain of IS/IT/CS educators, students, and practitioners.

Due to the rapid advancement in digitalization, there has been a shift wherein data-driven
organizations depend heavily on database and data analytics practitioners possessing SQL as a
top skill. As such, SQL has become ubiquitous in relational databases across most functional
areas of modern organizations (Papiernik, M. (2022, October 19)). It has become imperative that
a greater cross-section of educators, students, and practitioners possess more than just basic SQL
skills (Dyer, John N. (2023)). Enki. (n.d.-a) makes the case that SQL is an essential skill in all
areas of business, and that at best, SQL is glossed over in college courses, and since many
developers do not work directly with SQL in their jobs, they do not have strong skills in SQL.
And since SQL is the oldest, most established and widespread technology (in terms of data),
SQL skills make developers more productive. Scores of “how-to” questions are posted online
regarding more advanced queries within the RDBMS, like creating data distributions, percentile
and rank calculations, and related aggregates. Those questions, and the methods in this paper
have experienced little formal addressing in the literature, practice, or online forums.

This paper exemplifies SQL skills beyond the basic SELECT statement, allowing one to
study and practice the breadth of query-based solutions available using SQL. The purpose is
primarily to be a teaching case type application to enhance and expand the SQL skill sets for
educators, students, and practitioners of SQL in academics and industry. Hopefully, the paper
can help bridge the gap between classroom SQL and within-field practice, wherein many
IS/IT/CS and analytics persons are expected to ”hit-the-ground-running” in SQL. By
experiencing SQL topics at a higher level through practice and case application, it is hoped that
the student and practitioner can enhance their SQL skill set in terms of what more can be
accomplished beyond basic SQL when one possesses skills providing solutions within the
practice of SQL programming. It is hoped that this paper will make a meaningful contribution to
such SQL skills. This paper is based on the work of Dyer, John N. (2023).

ACCESS DATABASE AS THE PLATFORM

Microsoft Office Access in the classroom has many benefits for the educator, student,

and practitioner. Microsoft Access is taught in academics and frequently used in industry. Enlyft
(n.d.-a) found that over 124,000 companies use Access, with most having between 50 and 200
employees, and annual revenue between $1 million $10 million. They identify industry users to
include North Face, NetSuite and Red Hat, among many others. It is also estimated that Access
has almost 11% market share (The Access Man. (n.d.)), (FMS (n.d.)). Additionally, DB-Engines
(DB-engines ranking (n.d.)) places Access as the ninth most popular RDBMS worldwide.
Access’s ease of use, as well as prolific use in industry validates it as an appropriate RDBMS to
use in teaching and practice.

Primarily, a course in database is to teach the basic concepts to design and implement a
database, including database modeling, design, creating tables and relationships, and designing
queries using built-in tools and SQL. A typical database course is usually not focused on any one
RDBMS, such as Oracle, SQL Server, or MySQL, etc. All RDBMS offer some of the same basic
functionality, but often with a different interface, development platform, scalability, and
supporting software.

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 3

Unfortunately, teaching with enterprise level RDBMS often comes with high overhead costs
including software installation and configuration, a steep learning-curve, excessive ”how-to”
documentation and lab demonstrations, a high level of abstraction, sophisticated and sometimes
difficult development tools and platforms, deployment, and remote accessibility issues, to name
a few.

BASIC SQL AND AGGREGATE FUNCTIONS

Aggregate functions are calculations performed on a set of data resulting in a single
number to accurately summarize the data. They are commonly used in descriptive statistics and
analytics (Hayes, A. (n.d.)). SQL readily allows organizing and summarizing data within the
domain of the SELECT and JOIN operators, projecting aggregate functions of data, calculated
expressions, arithmetic and comparison operators, IF/CASE statements, and inline formatting
(Dyer, John N. (2023)). A list of SQL operators is available at SQL operators (n.d). SQL
includes a small set of built-in aggregate functions (sum, count, average, minimum, maximum,
variance, standard deviation, first, last) but was not designed to calculate percentile or rank
distribution summaries, percentile aggregates, descriptive aggregates like median, mode, range,
IQR, skewness, business related indices, etc.

For these unsupported summaries and aggregates, one might employ the EAI approach.
But, when the RDBMS is used to provide real-time data summaries/aggregation (SAP
HANA/ABAP/Open SQL, Sales Force SQQL), such as used in managerial dashboards and
visual summaries, EAI is not a workable approach, hence a reason to implement the non-SQL
supported queries within the RDBMS. Many software applications in FinTech, marketing
research, human resources, logistics, etc., are integrated with SQL platforms that require real-
time applications of SQL, not simply EAI type API calls. Additionally, the EAI approach is a
single-user instance, while in the domain of the RDBMS, the multi-user approach allows several
users to share summary views and aggregates in real-time.

The queries implemented in this paper are important in providing a more complete
organization and summary of large data sets that may be used on a case-by-case basis with other
descriptive aggregates, or as additional metrics in a larger summary like a managerial dashboard
(Dyer, John N. (2023)). The queries include those to create a complete percentile/rank
distribution of data (Section 7, Method 1), queries to calculate exact percentiles (Section 8,
Method 2), and a query template to approximate percentiles that can be implemented to
simultaneously calculate multiple percentiles including ventiles, deciles, quintiles, and quartiles
(Section 9, Method 3).

PERCENTILES OVERVIEW

Percentiles are relative locations of data in an ordered data set. The Pth percentile value
(p) of a set of data is the value at which p percent of the data falls at or below it. Common
percentiles include ventiles (5th p, 10th p, … 95th p), deciles (10th p, 20th p, … 90th p), quintiles
(20th p, 40th p, 60th p, 80th p) and quartiles (25th p, 50th p, 75th p). Percentiles are largely used in
statistics and analytics, and in the everyday life of data consumers. Percentiles are used to
describe the distribution of values such as test scores, health indicators, and other measurements.
That is, given a percentile value, calculate the value’s relative standing in the data set, even if the
actual data value is unknown (Dyer, John N. (2023)). If one’s test score is at the 75th percentile,

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 4

then 75% of the other scores fall at or below that score. Likewise, the interquartile range (IQR),
calculated as the 75th percentile minus the 25th percentile (Q3-Q1), is a measure of variability
(dispersion) for the middle 50 percent of data. The IQR is often used as a measure to calculate
skewness and to detect outliers in data.

Percentile locations are based on ranks of ordered data. The percentile/rank distribution
quantifies percentiles and ranks across all ordered data values. The percentile distribution is also
known as the cumulative distribution function (CDF), and is widely used in empirical data
analysis. The distribution shows the cumulative percentile of every value in the ordered data set.
This is the case in the implementation in Method 1 below. In general, the percentile of a data
value is given as

Percentile = [(count values at and below a selected value) / (count total values)]*100.

Dyer, John N. (2023) provided the Appendix A.1 table image reflecting the ID and data
values for n = 17 ordered numbers, calculating the percentile for value 103. Solving for the
Percentile = [9/17)*100 = 53rd, so 53% of values are at or below 103. In this case, the data value
is specified first, and the associated percentile is calculated. On the other hand, the percentile
value can be specified, and the associated data value can be located. One may want the 25th or
50th percentile value, corresponding to Q1 (1st Quartile) or Q2 (2nd Quartile/Median), or the IQR,
along with the minimum and maximum values. This is the case in the implementation in Method
2 below.

When calculating aggregates, and depending on whether there are an odd or even number
of data values (n), the value at the Pth percentile will be located at a specific rank, or between two
ranks. When between two ranks, the Pth percentile value is interpolated as an average of the
values between the two ranks, but other interpolation schemes exist (Dyer, John N. (2023)). The
equation for calculating the exact percentile rank differs depending on if n is odd or even. When
n is odd,

Percentile Rank (odd) = [p]x[n+1],

where p is the specified percentile value (in decimal notation) and n is the number of data values.
When n is even,

Percentile Rank (even) = [p]x[n].

Dyer, John N. (2023) provided the example to find the 50th percentile value of the 17
values, Percentile Rank = [0.5]x[18] = 9th rank, corresponding to value 103. For the 25th
percentile, Percentile Rank = [0.25]x[18] = 4.5th rank. There is no 4.5th rank, so the values
between ranks 4 and 5 are averaged; [25+45]/2 = 35. There is no value 35, so the 25th percentile
value is an interpolated approximation. For a more thorough treatment of percentile calculations,
see Frost, J. (2022).

PERCENTILES IN SQL

This paper introduces 3 methods using SQL to calculate the entire percentile/rank
distribution, to calculate exact percentiles, and to calculate approximate percentiles (based on the

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 5

percentile/rank distribution). While the methods implemented here use many of the common
SQL keywords, they also apply less commonly used textbook-based or example-based SQL. The
methods here require use of SELECT, FROM, WHERE, BETWEEN, AND, AS, and INSERT

INTO keywords, and further exemplifies using the COUNT aggregate, the IIF statement, the
MODULO function, the AVG (average) aggregate function, the TOP X PERCENT statement,
and the FIRST and LAST aggregate statements.

SQL SYNTAX

Borrowing from Dyer, John N. (2023), for SQL syntax in this paper, BOLD ALL CAP
font is used for SQL KEY WORDS, FUNCTIONS, ARITHMATIC, and COMPARISON
operators, as well as syntax characters including the comma, parenthesis, and the semi-colon.
Italic fonts are used for the names of tables, queries, and columns, as well as user input words,
phrases, and numbers. When querying from only one table or query, column names are
surrounded in brackets; []. When querying from two or more tables or queries, [table].[column]
and [query].[column] dot notation is used, indicating the name of the table or query, a dot, and
the column name. Columns derived from aggregates, expressions, and functions are aliased using
the AS operator to improve the readability of the SQL.

METHOD 1 - SQL IMPLEMENTATION TO CALCULATE THE PERCENTILE/RANK

DISTRIBUTION

Method 1 is based on an SQL INSERT INTO statement that inserts the raw data from
the starting table (myData) into a table named Percentile_Rank_Distribution, calculates and
inserts percentiles, ranks and the ID for all data values. If data values are equal they share the
same rank, but each data value has a unique percentile. Complete the following 3 setup tasks to
create the percentile/rank distribution.

Task 1: Create a table named myData and enter data shown in the Appendix A.1 table image.
See the resulting table design shown in the Appendix A.2 table design image.

Task 2: Create a table named Percentile_Rank_Distribution with columns ID (Integer),
Percentile (Double(Fixed), 4 decimal places), Rank (Integer), and Data (Double). See the
resulting table design in the Appendix A.3 table design image.

Task 3: Create a query named Percentile_Rank_Query that inserts each data value’s ID,
percentile location, rank location, and data value into the Percentile_Rank_Distribution table.
The result shown in the Appendix A.4 query image is the complete ID/Percentile/Rank/Data
distribution.

The SQL to create the percentile/rank distribution follows.

SQL: Percentile_Rank_Query
INSERT INTO Percentile_Rank_Distribution
(ID, Percentile, Rank, Data)
SELECT [myData].[ID],

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 6

([ID]/(SELECT COUNT(*) FROM myData))*100 AS Percentile,
(SELECT COUNT(*) FROM myData AS D1 WHERE [D1].[Data] < [myData].[Data]) + 1
AS [Rank], Data FROM myData;

The query can be recycled for different data sets by replacing the data in the myData table,
deleting the existing data in the Percentile_Rank_Distribution table, and executing the query.

To interpret the SQL by line number, the program proceeds as follows.

Lines 1 and 2 use the INSERT INTO statement defining column names in parentheses.

Line 3 inserts the ID from the myData table into the query column ID.

Lines 4 and 5 calculate each percentile value by dividing each sequential ID number by the total
count of data values (n), then multiplies by 100, aliases it as Percentile, and inserts it into the
query column Percentile.

Lines 6, 7, and 8 create an alias copy of the myData table named D1, then assigns a count for
each row, where the data value in the D1 alias is less than the data value in the myData table.
The +1 forces ranks to start at 1. The projections are aliased as Rank and inserted into the query
column Rank.

Line 8 inserts the data value from each row from the myData table, and uses the FROM
statement to indicate the source table. In summary, the progression is as follows.

1. myData: Enter ordered data into the table.

2. Percentile_Rank_Query: Execute and view the Percentile_Rank_Distribution table.

METHOD 2 - SQL IMPLEMENTATION TO CALCULATE EXACT PERCENTILE

AGGREGATES

Method 2 is based on simple ranking of data depending on whether the number of data

values (n) is odd or even. Since the value n is used in SQL statements, it is referenced as a
dynamic value using the SQL SELECT COUNT(*) aggregate function, queried from the table
myData. Method 2 uses the arithmetic operator MOD (modulo) to determine if there is an odd or
even number of data values. Other RDBMS use the keyword MODULO or the % symbol
instead. SQL is used to determine odd versus even n by finding the modulo of two values; x

MOD y. The MOD function calculates the remainder of a value, the dividend (x), divided by
another value, the devisor (y). If for example x/y = 8.1, the quotient is 8 and the remainder is 1.
In this implementation, the dividend is x = n, and the devisor will always be y = 2. Without a
deep dive into modulo calculus, accept that if n MOD 2 = 1, then n is odd, and if n MOD 2 = 0,
then n is even. In this implementation, y is always chosen to be 2 to ensure that the MOD result
is either 0 or 1.

For the myData table, 17 MOD 2 = 1, n is odd. This result is required in the
implementation of Method 2. The IFF function is used to determine ranks based on if n is odd or

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 7

even. It is noted that all SQL platforms use IF functions, but Access does not allow the
alternative CASE statement. As such, this implementation uses the IFF function as it is common
across all SQL platforms. Before using this method, a one-time setup for any percentile
calculation is completed, as shown below. First ensure the starting table myData from Method 1
Task 1 exists.

Complete the following 5 setup tasks.

Task 1: Create a table named myPercentile with one column named P (Double). The table has
one row and one column, containing the decimal Pth percentile associated with the data value
that is to be located. See the Appendix A.4 table design image.

Task 2: Create a query named myCountModulo using the SQL SELECT COUNT (*) aggregate
function and n MOD 2 to calculate the count and modulo of data from the myData table. The
count is aliased as n and the modulo is aliased as Mod.

SQL: myCountModulo
SELECT COUNT([ID]) AS n, n MOD 2 AS Mod

FROM myData;

Task 3: Create a query named myRanks to determine the two ranks, R1 and R2, associated with
the Pth percentile. This query depends on a two IFF functions using the value of Mod from the
query myCountModulo. It then uses the value P from the myPercentile table to determine ranks
R1 and R2. The first IIF determines if MOD = 0 (n is even), then calculates the rank R1 =
[P]*[n+1], else R1 = [P]*[n]. For the second IIF, if n is even, then R2 = R1+1, else R2 = R1. R1
is rounded to 0 decimal places, forcing integer ranks.

SQL: myRanks
SELECT
IIf([Mod] = 0,
Round([P]*([n] + 1), 0),
Round([P]*[n], 0)) AS R1,
IIf([Mod] = 0, [R1] + 1], [R1]) AS R2
FROM myCountModulo, myPercentile;

Task 4: Create a query named myValues to locate the two values, Value1 and Value2, that
correspond to the two ranks in myRanks.

SQL: myValues

SELECT Data

FROM [myData], [myRanks]
WHERE [myData].[ID]
BETWEEN

[myRanks].[R1] AND [myRanks].[R2];

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 8

Task 5: Create a query named myPercentileValue using the SQL AVG aggregate function to
calculate the arithmetic mean of the two values in myValues.

SQL: myPercentileValue

SELECT AVG([Data]) AS myPercentileValue FROM myValues;

Method 2 Example Application

Following one-time setup, the queries are automatically updated each time a new set of data
is entered into the myData table. The desired percentile is entered into the myPercentile table and
the myPercentileValue query is executed. An example with results follows.

1. Open table myPercentile and enter the value 0.5. Close the table.

2. Execute myPercentileValue.
Result: myPercentileValue = 101.5

For the intermediate queries, one can execute each query below and view the results, although
doing so is not necessary.

Query: myCountModulo
Results: n = 17, Mod = 1

Query: myRanks
Results: R1 = 8, R2 = 9

Query: myValues
Results: 100 and 103

The next example applies to an even number of data values; n = 18. Perform the following steps
and view the results.

Step 1: Open the myData table and append a row to the bottom; ID = 18, Data = 230. Save and
close the table.

Step 2: Execute the myPercentileValue query.

Result = 115

In summary, the progression is as follows.

1. myData: Enter ordered data into the table.

2. myPercentile: Enter desired Pth percentile into the table.

3. MyCountModulo: Calculate the count n and modulo.

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 9

4. MyRanks: Locate the data ranks.

5. MyValues: Locate the data values.

6. myPercentileValue: Execute the query to calculate and view the Pth percentile value.

METHOD 3 - ALTERNATIVE SQL IMPLEMENTATION FOR PERCENTILE

AGGREGATES

Method 3 allows one to create multiple queries from a query template using the

Percentile_Rank_Distribution table as a source to approximate percentiles and ranks for pre-
specified percentiles, such as the quartiles. One could also pre-specify the percentile/rank
ventiles, deciles, and quintiles. The method is based on using the TOP X PERCENT SQL
statement, querying the Percentile_Rank_Distribution table, and using the LAST SQL statement
to locate the last row in the query.

The X in the TOP X PERCENT statement must be between 1 and 100, where 100
corresponds to the maximum data value. Common values of X include 25, 50, 75, corresponding
to the quartile values. The advantage of this implementation is the ability to predefine as many
individual approximate percentile calculations as desired, with relative ease, without being
concerned with an even or odd number of data. As a whole, these percentiles can be used in an
aggregate dashboard-type application to more fully summarize the distribution of data, as is
shown in Appendix B.

The implementation requires n of at least 100. The resulting percentiles are very close
approximations instead of exact percentiles in Method 2. The standard form of the query is
shown below, named P_Template, which can be used as a template for any specified values of X.
Note that the query is a nested query; a SELECT within a SELECT. The inner query returns the
TOP X PERCENT of data values, while the outer query returns the LAST row of the inner
query.

SQL: P_Template
SELECT
Last([ID]) AS _ID,
Last([Percentile]) AS _Percentile,
Last([Rank]) AS _Rank,
Last([Data]) AS _Data
FROM
(SELECT TOP X PERCENT ID, Percentile, Rank, Data
FROM Percentile_Rank_Distribution);

The example below shows the implementation of the SQL to calculate the median, that is, Q2
(50th percentile). Only X must be specified in the query line 7, TOP X PERCENT, shown
below. The query name is Q2.

SQL: Q2
SELECT
Last([ID]) AS _ID,

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 10

Last([Percentile]) AS _Percentile,
Last([Rank]) AS _Rank,
Last([Data]) AS _Data
FROM
(SELECT TOP X PERCENT ID, Percentile, Rank, Data
FROM Percentile_Rank_Distribution);

The aliased column names all start with the underscore, like _ID, since using the same
column name as in the LAST statements create circular references. The results for the Q2 query
(Q2 = 175.5) are shown in the Appendix A.6 query image, where myData has n = 131 records
used in Method 1. The exact Q2 value based on the Method 2 is 176.53. Appendix B provides
the table structure (image B.1) and subsequent queries to create and populate a Quartiles table
showing 5 rows of percentile, rank and data values for the minimum, Q1, Q2, Q3, and maximum.
In statistics, this is called the 5-number summary. The example is used to show how the
aggregate functions and summaries can be extended to a dash-board type summary aggregate of
data.

CONCLUSION

The purpose of the paper is to enhance the skill set of those practicing or studying SQL
toward a higher-level of learning and practice, especially in the increasing trend in SQL
proficiency required by data-driven organizations. The skills presented are related to calculating
percentile/rank distributions, as well as exact and approximate percentile aggregates for
ungrouped data. The skills went beyond the limited textbook treatment of operators such as
MOD, IF/CASE, TOP, FIRST, LAST statements, and introduced the percentile/rank distribution
query, among others. The examples were presented in Microsoft Access since many users have
Microsoft Access more readily available than an enterprise RDBMS. SQL educators, students
and practitioners can benefit from the value-added components of the paper, toward improved
SQL skills, and better understanding of SQL programming. The complete Access database with
tables and queries is available upon request.

REFERENCES

Dyer, John N. (2023), Teaching Case. An Instructor’s Tutorial and Student Project for

Extending SQL Implementation to Calculate Percentile Aggregates for Ungrouped Data.
Proceedings of the ISCAP Conference, Albuquerque, NM.,, pp 1-7, ISSN: 2473-
4901v9n5911, https://iscap.us/proceedings/2023/index.html

DB-engines ranking (n.d.) historical trend of the popularity ranking of database management

systems. Retrieved March 7, 2024 from https://db-engines.com/en/ranking_trend

Enki. (n.d.-a) Blog - why SQL is the #1 essential skill for all professionals. examples inside.

Retrieved March 1, 2024 from https://www.enki.com/post/why-sql-is-the-1-essential-skill-
for-all-professionals

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 11

Enlyft (n.d.-a) Microsoft Access Commands 7.77% market share in database management
system. Microsoft Access Commands 7.7% market share in Database Management System
in 2022. Retrieved March 4, 2024 from https://enlyft.com/tech/products/microsoft-access

FMS (n.d.) Microsoft Access within an organization’s overall database strategy. Microsoft

Access within an Organization’s Database Strategy. Retrieved March 1, 2024 from
http://www.fmsinc.com/MicrosoftAccess/Strategy/index.asp

Frost, J. (2022, March 13). Percentiles: Interpretations and calculations. Statistics By Jim.

Retrieved November 20, 2022 from
https://statisticsbyjim.com/basics/percentiles/#:~:text=To%20calculate%20an%20interpolate
d%20percentile,11%20%2B%201)%20%3D%208.4

Hayes, A. (n.d.). Aggregate function: Definition, examples, and uses. Investopedia. Retrieved

March 7, 2024 from https://www.investopedia.com/terms/a/aggregate-function.asp

Isarocket (2024a, January 30). Microsoft Migration: Why you should upgrade from access.

InterSoft Associates Custom Software Solutions. Retrieved March 7, 2024 from
https://intersoftassociates.com/articles/migrations/microsoft-migration-why-you-should-
upgrade-from-
access/#:~:text=Did%20You%20Know:,is%20available%20in%2026%20languages.

Papiernik, M. (2022, October 19). Why you should learn SQL. DigitalOcean. Retrieved March 1,

2024 from https://www.digitalocean.com/community/conceptual-articles/why-you-should-
learn-sql

SQL mod(): A quick glance of SQL mod() with examples. EDUCBA. (2022, June 10). Retrieved

November 21, 2022 from https://www.educba.com/sql-mod/

SQL operators. (n.d.). Retrieved November 20, 2022 from
https://www.w3schools.com/sql/sql_operators.asp

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 12

APPENDIX A

Appendix A.1 – myData

Appendix A.2 – myData Table Columns and Data Types

Appendix A.3 – Percentile Rank Distribution Table Columns and Data Types

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 13

Appendix A.4 – Percentile Rank Distribution

Appendix A.5 - myPercentile Table Data Type

Appendix A.6 – Q2 Query Results

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 14

APPENDIX B

Setup Tasks

1. Insert data into the MyData table (n >= 100).
2. Delete existing data in the Percentile_Rank_Distribution table.
3. Execute the Percentile_Rank query.

Complete the 3 steps below.

Step 1: Create a table named Quartiles with columns ID, Percentile, Rank, Date, as shown in the
Appendix B.1 table design image below. The percentile column can use data type Double (fixed)
with desired number of decimal places.

Appendix B.1 - Quartiles

Step 2: Create the 5 queries below. The first query is for the minimum, followed by Q1, Q2, and
Q3, ending with a query for the maximum. Note that the Q0_Insert query can use MIN instead
of FIRST, and the Q4_Insert query can use MAX instead of LAST.

SQL: Q0_Insert (Minimum)
INSERT INTO Quartiles (ID, Percentile, Rank, Data)
SELECT FIRST([ID]) AS _ID, FIRST([Percentile]) AS _Percentile, FIRST([Rank]) AS
_Rank, FIRST([Data]) AS _Data
FROM Percentile_Rank_Distribution;

SQL: Q1_Insert (Q1/25th Percentile)
INSERT INTO Quartiles (ID, Percentile, Rank, Data)
SELECT [_ID], [_Percentile], [_Rank], [_Data]
FROM Q1;

SQL: Q2_Insert (Q2/50th Percentile)
INSERT INTO Quartiles (ID, Percentile, Rank, Data)
SELECT [_ID], [_Percentile], [_Rank], [_Data]
FROM Q2;

SQL: Q3_Insert (Q3/75th Percentile)
INSERT INTO Quartiles (ID, Percentile, Rank, Data)
SELECT [_ID], [_Percentile], [_Rank], [_Data]
FROM Q3;

Journal of Business Cases and Applications Volume 44

Extending Standard SQL Implementation, Page 15

SQL: Q4_Insert (Maximum)
INSERT INTO Quartiles (ID, Percentile, Rank, Data)
SELECT LAST([ID]) AS _ID, LAST([Percentile]) AS _Percentile, LAST([Rank]) AS _Rank,

LAST([Data]) AS _Data
FROM Percentile_Rank_Distribution;

Step 3: Execute each of the 5 queries in sequence.

The Appendix B.2 table image displays the results in the table Quartiles based on Section 8,
Method 1 example using n = 131 data values.

Appendix B.2 – Quartiles Results

